Research Data Workshop Serie
- Introduction to R Shiny

Lucas Alcantara, Ph.D.
alcantal@uoguelph.ca

ﬁéﬁ AGRI-FOOD DATA
00\ AT THE UNIVERSITY of GUELPH

' Workshop Outline

* Welcome to Shiny

Build a user interface

Add control widgets

Display reactive output

Read and manipulate data

Control the reactive flow

<200

2 | Introduction to RShiny

Based on Posit’s Shiny Primer

* https://shiny.posit.co/r/getstarted

Shing

GET STARTED

B Shiny Basics
Welcome to Shiny
Build a user interface
Add control widgets
Display reactive output
Use R scripts and data
Use reactive expressions

Share your apps

Build an App
Next Steps

Home GetStarted ShinyforR ~ Shiny for Python Blog Q

@ ‘ Get Started Articles Gallery Reference Help Deploy Contribute

Welcome to Shiny

Installation

Shiny is an R package that makes it easy to build interactive web
applications (apps) straight from R. This lesson will get you started building
Shiny apps right away.

If you still haven't installed the Shiny package, open an R session, connect
to the internet, and run

.

install.packages("shiny")

Example Shiny Apps
Hello Shiny!
Plﬂrnb« of bins: ~ . Histogram of waiting times

A il Ll

(%)

3

| Introduction to RShiny

SDe

https://shiny.posit.co/r/getstarted

Welcome to Shiny

-L2ADC

Welcome to Shiny

http://127.0.0.1:4343 | 21| Open in Browser @—-j “S- Publish ~

Hello Shiny!

Number of bins: Histogram of waiting times

50 60 70 80 90

|

Frequency
15
l

Waiting time to next eruption (in mins)

5

AN

| Introduction to RShiny

5 Welcome to Shiny

Installation

* |f you still haven’t installed the Shiny package, open an R session, connect to the
internet, and run

> install.packages("shiny")

Example Apps

* The Shiny package has eleven built-in examples that each demonstrate how Shiny
works. Each example is a self-contained Shiny app

> library(shiny)

> runExample("01_hello")

<200

6 | Introduction to RShiny

' Welcome to Shiny

Structure of a Shiny App

* The simplest form of a Shiny app is contained in a single script called app.R, which
contains three components:
* a user interface object
e a server() function

* a call to the shinyApp() function

Let’s inspect the Hello Shiny App’s code

<200

7 | Introduction to RShiny

' Welcome to Shiny

Structure of a Shiny App

* The simplest form of a Shiny app is contained in a single script called app.R, which
contains three components:
* a User Interface (Ul) object — layout and appearance of the app
* a server() function — logics behind the app

* a call to the shinyApp() function — creates the app from Ul-server pair

Let’s inspect the Hello Shiny App’s code

<200

8 | Introduction to RShiny

' Welcome to Shiny

Running an App

* You can create a Shiny app by making a new directory and saving an app.R file
inside it.

* It is recommended that each app will live in its own unique directory.

* You can run a Shiny app by giving the name of its directory to the
function runApp().

* For example, if your Shiny app is in a directory called my_app, run it with the
following code:

library(shiny)
runApp(”./my_app")

<200

9 | Introduction to RShiny

' Welcome to Shiny

Your turn!

1. Create a new directory named my_app in your working directory

2. Create a new script called app.R
3. Copy the code from the Hello Shiny sample app and paste into app.R
4. Launch your shiny app with the function runApp()

<200

10 | Introduction to RShiny

' Welcome to Shiny

Let’s try changing some things on app.R
1. Change the title from “Hello Shiny!” to “Hello World!”.
2. Set the minimum value of the slider bar to 5.

3. Change the histogram border color from "white" to "orange"

<200

11 | Introduction to RShiny

' Welcome to Shiny

Relaunching Apps

* On the R console
* Run runApp(”./my_app")

* On RStudio
* Open the app.R script and click the Run App button.
e Use a keyboard shortcut
* MacOS Command + Shift + Enter
* Windows Control + Shift + Enter
e Posit Cloud Any of the above

<200

12 | Introduction to RShiny

' Welcome to Shiny

Go Further

The Shiny gallery (https://shiny.posit.co/gallery) provides some good examples. You

can use any of the eleven pre-built Shiny examples listed below as a starting point:

runExample("01_hello")
runExample("02_text")

runExample
runExample

'03_reactivity")
'04_mpg")

runExample("05_sliders")
runExample("06_tabsets")

(
(
(
t
(
(

a histogram

tables and data frames
a reactive expression
global variables

slider bars

tabbed panels

runExample("07_widgets").
runExample("08_html")
runExample("09 upload")
runExample("10_download")
runExample("11_timer")

help text and submit buttons

Shiny app built from HTML
file upload wizard

file download wizard

an automated timer

13

| Introduction to RShiny

<200

https://shiny.posit.co/gallery

Build a user

interface

-L2ADC

' Build a user interface

Layout

» Shiny uses the fluidPage() function to create a display that automatically adjusts
to the dimensions of your user’s browser window.

* You lay out the user interface of your app by placing elements in
the fluidPage() function.

ui <- fluidPage(
titlePanel("title panel"),
sidebarLayout(
sidebarPanel("sidebar panel"),
mainPanel("main panel")

| <200

15 | Introduction to RShiny More about layouts: https://shiny.posit.co/r/articles/build/layout-guide

https://shiny.posit.co/r/articles/build/layout-guide

' Build a user interface

HTML Content

e To add more advanced content, use one of Shiny’s 110 HTML tag functions.

Shiny function HTML5 equivalent

p() <p>

h1(), h2(), ... h6() <h1>, <h2>, ... <h6>
img()

br()

hr() <hr>

code() <code>

HTML()

A paragraph text

A 1st, 2nd 6t level header
An image

A line break (i.e., a blank line)
A horizontal line

A formatted block of code

Directly pass a character string as
HTML code

16 | Introduction to RShiny More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

<200

https://shiny.posit.co/r/articles/build/tag-glossary

' Build a user interface

HTML Content

* In general, any HTML tag attribute can be set as an argument in any Shiny tag
function. For example, you can center-align your text

ui <- fluidPage(
titlePanel("My Star Wars App"),
sidebarLayout(
sidebarPanel(),
mainPanel(
h6("Episode IV", align = "center"),
h6("A NEW HOPE", align = "center"),
h5("It is a period of civil war.", align = "center"),
h4("Rebel spaceships, striking", align = "center"),
h3("from a hidden base, have won", align = "center"),
h2("their first victory against the", align = "center"),
h1("evil Galactic Empire.", align = "center")

<200

17 | Introduction to RShiny More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

https://shiny.posit.co/r/articles/build/tag-glossary

' Build a user interface

Your turn

* Modify your app.R to display the app just like below

My Cool Dashboard

Upload your file here! Data Qutput

Filter options
Filter 1
Filter 2

<200

18 | Introduction to RShiny More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

https://shiny.posit.co/r/articles/build/tag-glossary

Add Control

Widgets

-L2ADC

' Add control widgets

Control widgets

e Web elements that users can
interact with and send
messages to the Shiny App

* Widgets collect a value from
the user. If the user changes
the widget, the value will
change as well

http://127.0.0.1:3771 = 51| Open in Browser

Basic widgets

Buttons Single checkbox
Action Choice A
Date range File input
2017-06-21 to 2017-06-21 Browse... No file selected
Radio buttons Select box
© Choice 1 Choice 1 v
Choice 2
Choice 3

Checkbox group

Choice 1
Choice 2
Choice 3

Help text

Note: help text isn't a true
widget, but it provides an easy
way to add text to accompany
other widgets.

Sliders

0 50 100

o

0 8 100
——)

“- Publish ~

Date input

2014-01-01

Numeric input

1

Text input

Enter text...

20

| Introduction to RShiny More about widgets:

http://shiny.rstudio.com/gallery/widget-gallery.html

<2 DG

http://shiny.rstudio.com/gallery/widget-gallery.html

' Add control widgets

Your turn

* Modify your app.R to display the app just like below

My Cool Dashboard

Upload your file here!
File Input

Browse...)
Filter options

Date Filter

2023-05-30 to 2023-05-30

Min Total Intake
0]

| | | | | | |
-10 -4 2 8 14 20 26 32 38 a4 50

Apply Filters

Raw Data

Filtered Data

21 | Introduction to RShiny

<200

Display Reactive

Output

-L2ADC

' Display reactive output

Reactive output
* |t automatically responds when you toggle a widget

e Two steps (where and how):
1. Add an R object to your user interface
2. Tell Shiny how to build the object in the server function

<200

23 | Introduction to RShiny

' Display reactive output

1. Add an R object to your user interface

* Shiny provides a family of functions
that turn R objects into output for your
user interface. Each function creates a
specific type of output

e Each of the *Output functions require a
single argument: outputld

e.g.: textOutput(outputld = "selected_dates")

dataTableOutput
htmIOutput
imageOutput
plotOutput
tableOutput
textOutput
uiOutput
verbatimTextOutput

DataTable
raw HTML
image
plot

table

text

raw HTML

text

24

| Introduction to RShiny

<200

' Display reactive output

2. Tell Shiny how to build the object in the
server function

* The server function builds a list-like object
named output that contains all codes
needed to update the R objects in your

app

* Each R object needs to have its own entry
in the list

* The new output element name should
match the name of the reactive element
that you created in the Ul

renderDataTable

renderlmage

renderPlot
renderPrint

renderTable

renderText

renderUl

DataTable

images (saved as a link to a
source file)

plots
any printed output

data frame, matrix, other
table like structures

character strings

a Shiny tag object or HTML

25

| Introduction to RShiny

<D0

' Display reactive output

1. Add an R object to your user interface

2. Tell Shiny how to build the object in the server function

),

Main panel for displaying outputs ----
mainPanel(
h2(tags$b("Raw Data")),
hri),
h2(tags$b("Filtered Data")),
textOutput('selected_dates"”
)
)
)

Define server logic required for the app ----
server <- function(input, output) {
outputﬂkelected_dates <- renderText({
"You have selected a date range"

B
}

My Cool Dashboard

Upload your file here!
File Input

Browse...)
Filter options

Date Filter

2023-05-30 to 2023-05-30

Min Total Intake

B 0]
|
-10 -4 2

Apply Filters

Raw Data

Filtered Data

You have selected a date range

26 | Introduction to RShiny

<200

' Display reactive output

Your turn!

1. Add another textOutput object to tell display a message about the selected
total intake

2. Add a renderText function to render such message to your new output object

<200

27 | Introduction to RShiny

' Display reactive output

Things to consider about reactive functions

* The function can be one simple line of text, or it can involve many lines of code
* Shiny will run all functions when you first launch your app

e Shiny will re-run them every time it needs to update your objects (in the Ul)

<200

28 | Introduction to RShiny

' Display reactive output

Use widget values
* input is another list-like object, but it stores the current values of all widgets
* These values will be saved under the names that you gave the widgets in your Ul

tags$b("Dashboard")

)’
Sidebar layout with input and output definitions ----
sidebarLayout(# Define server logic required for the app ----
Side panel with input widgets ---- server <- function(input, output) {
sidebarPanel(output$selected_dates <- renderText({
h2(tags$b("Upload your file here!")), paste("You have selected",
fileInput("file_input”, h3("File Input")), input[l],
"and",
h2(tags$b("Filter options™)), .
dateRangeInput("date_range"], h3("Date Filter")), S inputSgate_ranggl 213
sliderInput("intake", h3("Min Total Intake"), }
min = -10, max = 50, step = 2, value = @),
actionButton("submit", "Apply Filters")
))

Main panel for displaying outputs ----

mainPanel(
29

29 | Introduction to RShiny

' Display reactive output

Your turn!

1. Add another server function to output the value selected for the total intake

<200

30 | Introduction to RShiny

Read and

Manipulate Data

-L2ADC

' Read and Manipulate Data

Read Data

 File is read into memory and can be

accessed through the input object output$raw_data <- renderTable({

* file_inputis the inputld defined in the Ul req(inputifile_input)

» datapath is created by the filelnput df <- read.csv(input$file_input$datapath)
widget and is the path to a temp file
that contains the uploaded data

head(df)

1)

<M

32 | Introduction to RShiny 2

' Read and Manipulate Data

Your turn

* Use the renderTable, read.csv and some of the tidyverse functions to
Upload data into R
Read this data

Filter the date column to be between the specified date range

R A\

Render the resulting first 6 lines

<M

33 | Introduction to RShiny 3

' Read and Manipulate Data

Reactive Expressions df <- reactive({
req(input$file_input)

* Areactive expression is an R read.csv(input$file_input$datapath)

expression that uses widget input and 1

returns a value

output$raw_data <- renderTable({

* The reactive expression will update head(df())

this value only when the original S

widget changes
output$filtered_data <- renderTable({
data <- df() %%
filter(date >= input$date_range[1],
date <= input$date_range[2])
head(data)

)

M

34 | Introduction to RShiny 4

' Read and Manipulate Data

Your turn

* Create a new reactive expression for the filtered data and use that reactive to
1. Render the resulting first 6 lines, just like before

2. Render a message stating the number of rows on the filtered data

35 | Introduction to RShiny 3

5

Control the

Reactive Flow

-L2ADC

' Control the Reactive Flow

Event Reactives

* Sometimes you need to perform expensive computations with the parameters
given to your widgets

* If a computation is triggered after each time there is a new value for a widget,
this is not very efficient

* eventReactive are key to control the reactive flow, i.e.: to tell Shiny when to
execute a function

<M

37 | Introduction to RShiny 7

9 Control the Reactive Flow

Your turn!

* Create an action button to control the rendering of the raw data

<M

38 | Introduction to RShiny 8

THANK YOU!

Questions?

Feel free to reach me later at
alcantal@uoguelph.ca

39

&

AGRI-FOOD DATA
CANADA

AT THE UNIVERSITY of GUELPH

