
Research Data Workshop Series
- Introduction to R Shiny
Lucas Alcantara, Ph.D.
alcantal@uoguelph.ca

2

Workshop Outline

• Welcome to Shiny
• Build a user interface
• Add control widgets
• Display reactive output
• Read and manipulate data
• Control the reactive flow

| Introduction to RShiny 2

3

Based on Posit’s Shiny Primer

| Introduction to RShiny 3

• https://shiny.posit.co/r/getstarted

https://shiny.posit.co/r/getstarted

4

Welcome to Shiny

5

Welcome to Shiny

| Introduction to RShiny 5

6

Welcome to Shiny

| Introduction to RShiny 6

Installation
• If you still haven’t installed the Shiny package, open an R session, connect to the

internet, and run
> install.packages("shiny")

Example Apps
• The Shiny package has eleven built-in examples that each demonstrate how Shiny

works. Each example is a self-contained Shiny app
> library(shiny)
> runExample("01_hello")

7

Welcome to Shiny

| Introduction to RShiny 7

Structure of a Shiny App
• The simplest form of a Shiny app is contained in a single script called app.R, which

contains three components:
• a user interface object
• a server() function
• a call to the shinyApp() function

Let’s inspect the Hello Shiny App’s code

8

Welcome to Shiny

| Introduction to RShiny 8

Structure of a Shiny App
• The simplest form of a Shiny app is contained in a single script called app.R, which

contains three components:
• a User Interface (UI) object – layout and appearance of the app
• a server() function – logics behind the app
• a call to the shinyApp() function – creates the app from UI-server pair

Let’s inspect the Hello Shiny App’s code

9

Welcome to Shiny

| Introduction to RShiny 9

Running an App
• You can create a Shiny app by making a new directory and saving an app.R file

inside it.
• It is recommended that each app will live in its own unique directory.

• You can run a Shiny app by giving the name of its directory to the
function runApp().
• For example, if your Shiny app is in a directory called my_app, run it with the

following code:

library(shiny)
runApp(”./my_app")

10

Welcome to Shiny

| Introduction to RShiny 10

Your turn!
1. Create a new directory named my_app in your working directory
2. Create a new script called app.R
3. Copy the code from the Hello Shiny sample app and paste into app.R
4. Launch your shiny app with the function runApp()

11

Welcome to Shiny

| Introduction to RShiny 11

Let’s try changing some things on app.R
1. Change the title from “Hello Shiny!” to “Hello World!”.
2. Set the minimum value of the slider bar to 5.
3. Change the histogram border color from "white" to "orange"

12

Welcome to Shiny

| Introduction to RShiny 12

Relaunching Apps
• On the R console
• Run runApp(”./my_app")

• On RStudio
• Open the app.R script and click the Run App button.
• Use a keyboard shortcut
• MacOS Command + Shift + Enter
• Windows Control + Shift + Enter
• Posit Cloud Any of the above

13

Welcome to Shiny

| Introduction to RShiny 13

Go Further
The Shiny gallery (https://shiny.posit.co/gallery) provides some good examples. You
can use any of the eleven pre-built Shiny examples listed below as a starting point:

runExample("01_hello") # a histogram
runExample("02_text") # tables and data frames
runExample("03_reactivity") # a reactive expression
runExample("04_mpg") # global variables
runExample("05_sliders") # slider bars
runExample("06_tabsets") # tabbed panels

runExample("07_widgets"). # help text and submit buttons
runExample("08_html") # Shiny app built from HTML
runExample("09_upload") # file upload wizard
runExample("10_download") # file download wizard
runExample("11_timer") # an automated timer

https://shiny.posit.co/gallery

14

Build a user
interface

15

Build a user interface

| Introduction to RShiny 15

Layout
• Shiny uses the fluidPage() function to create a display that automatically adjusts

to the dimensions of your user’s browser window.
• You lay out the user interface of your app by placing elements in

the fluidPage() function.

ui <- fluidPage(

titlePanel("title panel"),
sidebarLayout(

sidebarPanel("sidebar panel"),
mainPanel("main panel")

)
)

More about layouts: https://shiny.posit.co/r/articles/build/layout-guide

https://shiny.posit.co/r/articles/build/layout-guide

16

Build a user interface

| Introduction to RShiny 16

HTML Content
• To add more advanced content, use one of Shiny’s 110 HTML tag functions.

More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

Shiny function HTML5 equivalent Creates

p() <p> A paragraph text

h1(), h2(), … h6() <h1>, <h2>, … <h6> A 1st, 2nd, … 6th level header

img() An image

br()
 A line break (i.e., a blank line)

hr() <hr> A horizontal line

code() <code> A formatted block of code

HTML() Directly pass a character string as
HTML code

https://shiny.posit.co/r/articles/build/tag-glossary

17

Build a user interface

| Introduction to RShiny 17

HTML Content
• In general, any HTML tag attribute can be set as an argument in any Shiny tag

function. For example, you can center-align your text
ui <- fluidPage(

titlePanel("My Star Wars App"),
sidebarLayout(

sidebarPanel(),
mainPanel(

h6("Episode IV", align = "center"),
h6("A NEW HOPE", align = "center"),
h5("It is a period of civil war.", align = "center"),
h4("Rebel spaceships, striking", align = "center"),
h3("from a hidden base, have won", align = "center"),
h2("their first victory against the", align = "center"),
h1("evil Galactic Empire.", align = "center")

)
)

)

More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

https://shiny.posit.co/r/articles/build/tag-glossary

18

Build a user interface

| Introduction to RShiny 18

Your turn
• Modify your app.R to display the app just like below

More about HTML tags: https://shiny.posit.co/r/articles/build/tag-glossary

https://shiny.posit.co/r/articles/build/tag-glossary

19

Add Control
Widgets

20

Add control widgets

| Introduction to RShiny 20

Control widgets
• Web elements that users can

interact with and send
messages to the Shiny App
• Widgets collect a value from

the user. If the user changes
the widget, the value will
change as well

More about widgets: http://shiny.rstudio.com/gallery/widget-gallery.html

http://shiny.rstudio.com/gallery/widget-gallery.html

21

Add control widgets

| Introduction to RShiny 21

Your turn
• Modify your app.R to display the app just like below

22

Display Reactive
Output

23

Display reactive output

| Introduction to RShiny 23

Reactive output
• It automatically responds when you toggle a widget
• Two steps (where and how):

1. Add an R object to your user interface
2. Tell Shiny how to build the object in the server function

24

Display reactive output

| Introduction to RShiny 24

1. Add an R object to your user interface
• Shiny provides a family of functions

that turn R objects into output for your
user interface. Each function creates a
specific type of output
• Each of the *Output functions require a

single argument: outputId

e.g.: textOutput(outputId = "selected_dates")

Output function Creates

dataTableOutput DataTable

htmlOutput raw HTML

imageOutput image

plotOutput plot

tableOutput table

textOutput text

uiOutput raw HTML

verbatimTextOutput text

25

Display reactive output

| Introduction to RShiny 25

2. Tell Shiny how to build the object in the
server function
• The server function builds a list-like object

named output that contains all codes
needed to update the R objects in your
app
• Each R object needs to have its own entry

in the list
• The new output element name should

match the name of the reactive element
that you created in the UI

Render function Creates

renderDataTable DataTable

renderImage images (saved as a link to a
source file)

renderPlot plots

renderPrint any printed output

renderTable data frame, matrix, other
table like structures

renderText character strings

renderUI a Shiny tag object or HTML

26

Display reactive output

| Introduction to RShiny 26

1. Add an R object to your user interface
2. Tell Shiny how to build the object in the server function

27

Display reactive output

| Introduction to RShiny 27

Your turn!
1. Add another textOutput object to tell display a message about the selected

total intake
2. Add a renderText function to render such message to your new output object

28

Display reactive output

| Introduction to RShiny 28

Things to consider about reactive functions
• The function can be one simple line of text, or it can involve many lines of code
• Shiny will run all functions when you first launch your app
• Shiny will re-run them every time it needs to update your objects (in the UI)

29

Display reactive output

| Introduction to RShiny 29

Use widget values
• input is another list-like object, but it stores the current values of all widgets
• These values will be saved under the names that you gave the widgets in your UI

30

Display reactive output

| Introduction to RShiny 30

Your turn!
1. Add another server function to output the value selected for the total intake

31

Read and
Manipulate Data

32

Read and Manipulate Data

Read Data
• File is read into memory and can be

accessed through the input object
• file_input is the inputId defined in the UI
• datapath is created by the fileInput

widget and is the path to a temp file
that contains the uploaded data

| Introduction to RShiny 32

33

Read and Manipulate Data

Your turn
• Use the renderTable, read.csv and some of the tidyverse functions to
1. Upload data into R
2. Read this data
3. Filter the date column to be between the specified date range
4. Render the resulting first 6 lines

| Introduction to RShiny 33

34

Read and Manipulate Data

Reactive Expressions
• A reactive expression is an R

expression that uses widget input and
returns a value
• The reactive expression will update

this value only when the original
widget changes

| Introduction to RShiny 34

35

Read and Manipulate Data

Your turn
• Create a new reactive expression for the filtered data and use that reactive to
1. Render the resulting first 6 lines, just like before
2. Render a message stating the number of rows on the filtered data

| Introduction to RShiny 35

36

Control the
Reactive Flow

37

Control the Reactive Flow

Event Reactives
• Sometimes you need to perform expensive computations with the parameters

given to your widgets
• If a computation is triggered after each time there is a new value for a widget,

this is not very efficient
• eventReactive are key to control the reactive flow, i.e.: to tell Shiny when to

execute a function

| Introduction to RShiny 37

38

Control the Reactive Flow

Your turn!
• Create an action button to control the rendering of the raw data

| Introduction to RShiny 38

39

THANK YOU!

Questions?
Feel free to reach me later at
alcantal@uoguelph.ca

