
Research Data Workshop Series
- Introduction to R
Lucas Alcantara, Ph.D.
alcantal@uoguelph.ca

2

Workshop Outline

• What is R
• Getting Started with R
• R Nuts and Bolts
• Getting Data in and Out of R
• Subsetting R Objects
• Project Time!

| Introduction to R 2

3

Based heavily on free e-books

• Peng, R. (2016). R Programming for Data Science. Lulu.com.

E-book available at: https://bookdown.org/rdpeng/rprogdatascience

• Wickham, H., Mine Cetinkaya-Rundel, & Grolemund, G. (2023). R for data science: Import, tidy,
transform, visualize, and model data (2nd ed.). O’Reilly Media.

E-book available at: https://r4ds.hadley.nz/

| Introduction to R 3

https://bookdown.org/rdpeng/rprogdatascience
https://r4ds.hadley.nz/

4

What is R?

5

What is R?

The quick answer is: R is a dialect of S

S is a language that was developed by
John Chambers and others at the old Bell
Telephone Laboratories (AT&T Corp.)

It was initiated in 1976 as an internal
statistical analysis environment - originally
implemented as Fortran libraries

In 1988, it was rewritten in C and began to
resemble the system that we have today

| Introduction to R 5

1988 1998

6

The S Philosophy

“[W]e wanted users to be able to begin in an interactive environment, where they
did not consciously think of themselves as programming. Then as their needs

became clearer and their sophistication increased, they should be able to slide
gradually into programming, when the language and system aspects would become

more important.”

Stages in the Evolution of S, John Chambers

| Introduction to R 6

https://web.archive.org/web/20050226075706/http://www.stat.bell-labs.com/S/history.html

https://web.archive.org/web/20050226075706/http:/www.stat.bell-labs.com/S/history.html

7

Back to R

• 1991: R was created by Ross Ihaka and Robert Gentleman in
the Department of Statistics at the University of Auckland.

• 1993: The first announcement of R was made to the public.

• 1996: Paper published with author’s experience developing R
Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics. Journal
of Computational and Graphical Statistics, 5(3):299–314, 1996.
https://doi.org/10.2307/1390807

• 1997: R Core Group was formed, and it still controls the
source code

• 2000: R version 1.0.0 was released

• 2023: R version 4.3.0 is the latest

| Introduction to R 7

https://doi.org/10.2307/1390807

8

Design of the R System

| Introduction to R 8

The R system is divided into 2 conceptual parts:
• The “base” R system is available from CRAN: Comprehensive R Archive Network

(https://cran.r-project.org).
• Everything else: many packages that can be used to extend the functionality of R.

https://cran.r-project.org/

9

Getting Started
with R

10

Getting Started with R

| Introduction to R 10

Install R

https://cran.r-project.org

https://cran.r-project.org/

11

Getting Started with R

| Introduction to R 11

Install R

https://cran.r-project.org

https://cran.r-project.org/

12

Getting Started with R

| Introduction to R 12

Install R

13

Getting Started with R

| Introduction to R 13

Install R

or

14

Getting Started with R

| Introduction to R 14

R Console: Not a very user-friendly interface

15

Getting Started with RStudio

| Introduction to R 15

Install RStudio Desktop

https://posit.co/download/rstudio-desktop

https://posit.co/download/rstudio-desktop/

16

Getting Started with RStudio

| Introduction to R 16

Install RStudio Desktop

17

Getting Started with RStudio

| Introduction to R 17

Another option: Posit Cloud (RStudio on the Cloud) https://posit.cloud

https://posit.cloud/

18

Getting Started with RStudio

| Introduction to R 18

Another option: Posit Cloud (RStudio on the Cloud) https://posit.cloud

https://posit.cloud/

19

Getting Started with RStudio

| Introduction to R 19

Another option: Posit Cloud (RStudio on the Cloud)

20

Getting Started with RStudio

| Introduction to R 20

Another option: Posit Cloud (RStudio on the Cloud)

21

R Nuts and Bolts

22

Entering Input

We type expressions on the R console. The '<-' symbol is the assignment operator.

The # character indicates a comment. Anything to the right of the # is ignored
(including the # itself).

| Introduction to R 22

23

Evaluation

When a complete expression is entered at the prompt, it is evaluated, and the
result of the evaluated expression is returned. The result may be auto-printed.

The [1] shown on the output above indicates that 'x' is a vector and 5 is its first
element.

| Introduction to R 23

24

R Objects

R has five basic or “atomic” classes of objects:
• character
• numeric (real numbers)
• integer
• complex
• logical (True/False)

The most basic type of R object is a vector.
-> A vector can only contain objects of the same class.
Exception: list

| Introduction to R 24

25

Numbers

Numbers in R are generally treated as numeric objects, i.e., double precision real
numbers
• 1 = 1.00
• 2 = 2.00

If you explicitly want an integer, you need to specify the 'L' suffix
• 1 = numeric object
• 1L = integer object

| Introduction to R 25

26

Numbers

There is also a special number 'Inf' which represents infinity
• 1/0 = Inf
• -1/0 = -Inf
• 1/Inf = 0

The value 'NaN' represents an undefined value (“not a number”)
• 0 / 0 = NaN

| Introduction to R 26

27

Attributes

Attributes are like metadata for the R object. If any, it can be accessed using the
'attributes()' function
• dimensions (e.g., matrices, arrays)
• class (e.g., integer, numeric)
• length
• other user-defined attributes/metadata
• etc.

Not all R objects contain attributes, in which case the attributes() function returns
NULL.

| Introduction to R 27

28

Creating Vectors

The 'c()' function can be used to create vectors of objects by concatenating things
together.

| Introduction to R 28

29

Mixing Objects

What will be the class of y on each of the following codes?

| Introduction to R 29

30

Mixing Objects

What will be the class of y on each of the following codes?

When different objects are mixed in a vector, coercion occurs so that every element
in the vector is of the same class.

| Introduction to R 30

31

Explicit Coercion

Objects can be explicitly coerced from one class to another using
the 'as.*' functions, if available.

| Introduction to R 31

32

Explicit Coercion

When R can’t figure out how to coerce an object, it can result in NAs being
introduced by coercion. A warning message is usually shown by R:

| Introduction to R 32

33

Matrices

Matrices are vectors with a dimension attribute. The dimension attribute is itself an
integer vector of length 2 (number of rows, number of columns)

| Introduction to R 33

34

Matrices

Matrices are constructed column-wise, so entries can be thought of starting in the
“upper left” corner (1,1) and running down the columns (1,2; 2,1; 2,2…).

| Introduction to R 34

35

Matrices

Matrices can also be created directly from vectors by adding a dimension attribute.

| Introduction to R 35

36

Matrices

Matrices can be created by column-binding or row-binding with
the 'cbind()' and 'rbind()' functions.

| Introduction to R 36

37

Lists

Lists are a special type of vector that can contain elements of different classes.

| Introduction to R 37

38

Lists

Lists are a special type of vector that can contain elements of different classes.

| Introduction to R 38

Based on the
functions you
learned, how can
you tell what the
classes of each of
these objects are?

39

Factors

Factors are used to represent categorical data and can be unordered or
ordered. “Integer vector labelled in alphabetical order”

| Introduction to R 39

40

Factors

The order of the levels of a factor can be set using the ‘levels’ argument to
factor().

| Introduction to R 40

41

Missing Values

Missing values are denoted by NA or NaN for q undefined mathematical
operations.
• is.na() is used to test if objects are NA
• is.nan() is used to test if objects are NaN
• NA values have a class (integer NA, character NA, etc.)
• NaN values are NA, but NOT the other way around

| Introduction to R 41

42

Missing Values

| Introduction to R 42

43

Data Frames

Data frames are used to store tabular data in R. It’s a special type of list where
every element of the list must have the same length.
• Columns = Elements of the list
• Number of rows = Length of each element of the list

Data frames can store different classes of objects in each column.

Data frames have both column and row names

| Introduction to R 43

44

Data Frames

Data frames can be created using the 'data.frame()' function

| Introduction to R 44

45

Names

R objects can have names, which is very useful for writing readable code and self-
describing objects.

| Introduction to R 45

46

Names

R objects can have names, which is very useful for writing readable code and self-
describing objects.

| Introduction to R 46

47

Names

R objects can have names, which is very useful for writing readable code and self-
describing objects.

| Introduction to R 47

48

Getting Data in
and Out of R

49

Reading and Writing Data

There are a few ways to read and write data into R.

| Introduction to R 49

Target Read function Write Function
Tabular data read.table(), read.csv(), etc. write.table(), write.csv(), etc.
Lines readLines() writeLines()
R code files source() -
Workspace files load() save()

50

Reading Data Files with read.table()

The read.table() function is one of the most used functions for reading data.

Let’s look at the Help page: ?read.table

| Introduction to R 50

51

Reading Data Files with read.table()

A few tips on what you can do to read your data faster:
• Set the argument comment.char = ""
• Set the argument stringsAsFactors = FALSE
• Use the argument colClasses
• Give the specific classes

• Assume all columns have the same class, e.g., character
• Use faster functions from different packages

| Introduction to R 51

52

R Packages

| Introduction to R53

R Packages

Base R

| Introduction to R54

R Packages

Base R R Packages

55

Install a package: once per computer/user
• install.packages("readr")

Load a package: once per R session
• library(readr)

Remove a package: once per computer/user
• remove.packages("readr")

| Introduction to R 55

R Packages on the Console

56

Install a package: once per computer/user

| Introduction to R 56

R Packages on RStudio

1

23

4

57

Load a package: once per R session

| Introduction to R 57

R Packages on RStudio

1

58

Load a package: once per R session

| Introduction to R 58

R Packages on RStudio

59

Remove a package: once per computer/user

| Introduction to R 59

R Packages on RStudio

1

2

60

Remove a package: once per computer/user

| Introduction to R 60

R Packages on RStudio

61

Different/Similar functions might have the same name in different packages
• Install and load the ‘dplyr’ package
• Same function name, different packages
• Load order DO matter!

• Detach both ‘stats’ and ‘dplyr’ packages
• Load ‘dplyr’ first and ‘stats’ later. Did you notice any difference?

• Try to be specific to which package you want to use to avoid conflicts
• stats::filter()
• dplyr::filter()

TIP: Use the ‘conflicted’ package to manage conflicts

| Introduction to R 61

Conflicting R Packages

62

Loading a package silently:
• suppressPackageStartupMessages(library(dplyr))
• Use it with caution!

| Introduction to R 62

R Packages

63

Getting Data in
and Out of R

64

Reading Data Files with the readr package

Popular read functions: read_table(), read_csv(), read_fwf

Advantage of using readr functions to read data files
• Easier debugging: warnings indicate which rows/observations triggered them
• Faster reading: automatically guesses column types from the first 1k lines only
• Reads compressed files automatically
• Nice user-oriented features:

• Progress bar when reading big files
• Short data description

• R objects from readr are tibbles, not base R’s data frames
*More on this later

| Introduction to R 64

65

Reading Multiple Data Files

Sometimes we have data saved in multiple files (e.g., one file per day)
What’s a quick way to read all of them into one R Object?

*Use data from the insentec folder

| Introduction to R 65

66

Writing Data Out of R

Like reading, many functions are available to write data out of R. A few examples:
• write.csv | write_csv
• write.table | write_table
• fwrite

Most of them you start specifying the object followed by the file path:
• write.csv(data, “my/path/to/data.csv”)

Common arguments include:
• Column/row names (T/F); Quote (T/F); Encoding (utf8, latin-1, etc.);
• Field separator (comma, space, tab, pipe, etc.); String for NA values

| Introduction to R 66

67

Subsetting R
Objects

68

Common Subsetting Operators

There are three operators that can be used to extract subsets of R objects.
• The [operator

• Always returns an object of the same class as the original
• It can be used to select multiple elements of an object

• The [[operator
• Is used to extract elements of a list or a data frame
• It can only be used to extract a single element
• The class of the returned object will not necessarily be a list or data frame

• The $ operator
• Is used to extract elements of a list or data frame by literal name
• Its semantics are similar to [[

| Introduction to R 68

69

Subsetting a Vector

The [operator can be used to extract multiple elements of a vector by passing the
operator an integer, an integer sequence, or a logical sequence.

| Introduction to R 69

70

Subsetting a Matrix

Matrices can be subsetted in the usual way with (i,j) type indices. One of the
indices can be missing.

| Introduction to R 70

71

Subsetting a List

Lists in R can be subsetted using all three operators, each used for a
different purpose.

*Notice you don’t need the quotes when you use the $ operator.

| Introduction to R 71

72

Subsetting a List

The $ operator can only be used with literal names.

| Introduction to R 72

73

Subsetting Nested Elements of a List

The [[operator can take an integer sequence if you want to extract a nested
element.

| Introduction to R 73

74

Subsetting Multiple Elements of a List

The [operator can be used to extract multiple elements from a list.

*Note that x[c(1, 3)] is NOT the same as x[[c(1, 3)]].

| Introduction to R 74

75

Removing NA Values

A common task in data analysis is removing missing values (NAs).

| Introduction to R 75

76

Removing NA Values

What if there are multiple R objects and you want to take the subset with no
missing values in any of those objects?

*Note that both vectors must have the same lengths

| Introduction to R 76

77

Removing NA Values

We can also use complete.cases() with data frames

| Introduction to R 77

*Or just use drop_na() from the
tidyr package:

78

Project Time!

79

RStudio Projects

RStudio projects make it straightforward to divide your work into multiple contexts,
each with their own working directory, workspace, history, and source documents.

| Introduction to R 79

1
2

80

RStudio Projects

RStudio projects make it straightforward to divide your work into multiple contexts,
each with their own working directory, workspace, history, and source documents.

| Introduction to R 80

81

RStudio Projects

When a project is opened within RStudio the following actions are taken:
• A new R session (process) is started
• The .Rprofile file in the project's main directory (if any) is sourced by R
• The .RData file in the project's main directory is loaded (if project options indicate

that it should be loaded).
• The .Rhistory file in the project's main directory is loaded into the RStudio History

pane (and used for Console Up/Down arrow command history).
• The current working directory is set to the project directory.
• Previously edited source documents are restored into editor tabs
• Other RStudio settings (e.g., active tabs, splitter positions, etc.) are restored to

where they were the last time the project was closed.

| Introduction to R 81

https://support.posit.co/hc/en-us/articles/200526207-Using-RStudio-Projects

https://support.posit.co/hc/en-us/articles/200526207-Using-RStudio-Projects

82

Reproducible Environments with the renv Package

Isolated
• Installing a new or updated package for one project won’t break your other

projects, and vice versa. That’s because renv gives each project its own private
package library.

Portable
• Easily transport your projects from one computer to another, even across

different platforms. renv makes it easy to install the packages your project
depends on.

Reproducible
• renv records the exact R and package versions you depend on, and ensures those

exact versions are the ones that get installed wherever you go.

| Introduction to R 82

https://docs.posit.co/ide/user/ide/guide/environments/r/renv.html

https://docs.posit.co/ide/user/ide/guide/environments/r/renv.html

83

renv General Workfow

1. Call renv::init() to initialize a new project-local environment with a private R
library,

2. Work in the project as normal, installing and removing new R packages as they
are needed in the project,

3. Call renv::snapshot() to save the state of the project library to the lockfile
(called renv.lock),

4. Continue working on your project, installing and updating R packages as
needed.

5. Call renv::snapshot() again to save the state of your project library if your
attempts to update R packages were successful

6. Call renv::restore() to revert to the previous state as encoded in the lockfile if
your attempts to update packages introduced some new problems.

| Introduction to R 83

https://docs.posit.co/ide/user/ide/guide/environments/r/renv.html

https://docs.posit.co/ide/user/ide/guide/environments/r/renv.html

84

renv Cache Location

| Introduction to R 84

85

THANK YOU!

Questions?
Feel free to reach me later at
alcantal@uoguelph.ca

