Documenting Your Data

Dr. Carly Huitema

DOCUMENTATION IS A LOVE LETTER THAT YOU WRITE TO YOUR FUTURE SELF.

- DAMIAN CONWAY -

LIBQUOTES.COM

Outline

- Introductions and rational
- FAIR data principles and the role of metadata
- Documenting files, folders and other metadata information
- Glossaries, Ontologies and more
- Persistent Identifiers in research
- Documenting Data Schemas with OCA

Value of Documenting Data

- Ethical and legal obligations
 - Research Ethics Board.
 - Granting agency, publishing requirements
- Research data is expensive to collect
- Some research data can only be collected once!
- Every time data is reused it increases in value
- Don't make mistakes using your own data (or other's data)
- To get more out of your research data
 - Document it better to make it more understandable
 - Make it available for reuse

Verification and Reproducibility

- Supports research verification and review
- Reproducibility of research
- What will you leave behind?
 - Can your supervisor understand
 - Can your students follow the work
 - Can you understand 6 months from now?
 - How much time will you spend when it comes time to write?

Comment on a paper by Samir Chatterjee. John Cornforth Show more v

+ Add to Mendeley 🚓 Share 🗦 Cite

https://doi.org/10.1016/S0040-4039(00)71452-3 ス

Get rights and content 🕫

Abstract

All claims in the paper cited (Tetrahedron Lett. 3249 (1979)) should be accepted as fact after, but not before, verification by independent experiment.

Mars Climate Orbiter

- \$125 billion USD total loss (+ lost time and effort)
- Failure to convert from Imperial to Metric units

IN I IS THE MUSERIA MUSICE MUCH ME MOUSE

Remember the Mars Climate Orbiter incident from 1999?

https://slideplayer.com/slide/5829764/19/images/37/Remember+the+Mars+Climate+Orbiter+incident+from+1999.jpg

Use the FAIR data principles as a guide for better data documentation

FAIR Data Principles

- Findable, Accessible, Interoperable, Reusable (FAIR)
 - For people and <u>machines</u>
- Applies to digital resources (like data, software, etc.)
- Formulation of 15 principles under FAIR was in 2016
 - Endorsed by the G20
- FAIR is not equivalent to open
 - (and open is not equivalent to 'free')
- Note: metadata can be tricky because someone's metadata can be someone else's data.
 - That's why FAIR principles are all written to apply to (meta)data

FAIR Data Principles

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles
- I3. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

Question – what does this mean to you?

To be Findable:

- F1. (meta)data are assigned a globally unique and persistent identifier
- F2. data are described with rich metadata (defined by R1 below)
- F3. metadata clearly and explicitly include the identifier of the data it describes
- F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

- A1. (meta)data are retrievable by their identifier using a standardized communications protocol
- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary
- A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

- I1. (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (meta)data use vocabularies that follow FAIR principles
- I3. (meta)data include qualified references to other (meta)data

To be Reusable:

- R1. meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1. (meta)data are released with a clear and accessible data usage license
- R1.2. (meta)data are associated with detailed provenance
- R1.3. (meta)data meet domain-relevant community standards

What is Metadata

• Metadata is data about data

You can't identify metadata just by looking at it

- Line is blurred between what is metadata and what is data
- One person's metadata is another person's data!
- Metadata examples are:
 - 1. Title and description
 - 2. Tags and categories
 - 3. Who created and when
 - 4. Who last modified and when
 - 5. What is the data license
 - 6. How was the data collected and analyzed
 - 7. Data column descriptions (schema or data dictionary)

Professor James Frew's two laws of metadata:

- 1. Scientists don't write metadata
- 2. Any scientist can be forced to write bad metadata

apiary_monitoring_2016_open_data.xlsx

Honey bee pests and pathogens in Ontario apiaries

Get data on pests and pathogens measured in honey bee apiaries in Ontario.

Monitoring honey bee pests and pathogens in Ontario apiaries is a key objective of Ontario's Pollinator Health Action Plan. To achieve this, the Ontario government began a 6-year monitoring project in 2015 to create an inventory of honey bee pests and pathogens found in Ontario apiaries and assess the prevalence and load of these pathogens. Apiary monitoring will continue until 2020.

For more information

Contact Agriculture, Food and Rural Affairs

Site #	Inspection #	Year	Inspection Date	Region	County	Number of Colonies Inspected (#)	American Foulbrood Postive Colonies (#)	European Foulbrood Postive Colonies (#)	Sacbrood Postive Colonies (#)	
1	1	2016	E/7/0016	Fast	STORMONT, DUNDAS	10	0	0	0	
1	1	2016	5/7/2016	East	AND GLENGARRY	10	0	0	U	
1	2	2016	5/25/2016	East	STORMONT, DUNDAS AND GLENGARRY	10	0	0	0	
1	3	2016	8/15/2016	East	STORMONT, DUNDAS AND GLENGARRY	10	0	0	0	
1	4	2016	9/22/2016	East	STORMONT, DUNDAS AND GLENGARRY	10	0	0	0	
2	1	2016	5/5/2016	South	WELLINGTON	10	0	0	0	
2	2	2016	6/9/2016	South	WELLINGTON	10	0	0	0	
2	3	2016	8/13/2016	South	WELLINGTON	10	0	0	0	
2	4	2016	9/27/2016	South	WELLINGTON	10	0	0	0	
3	1	2016	5/7/2016	South	BRANTFORD	10	0	0	0	
3	2	2016	5/23/2016	South	BRANTFORD	10	1	0	0	
3	3	2016	8/6/2016	South	BRANTFORD	6	0	0	0	
3	4	2016	10/4/2016	South	BRANTFORD	10	0	0	0	
4	1	2016	5/10/2016	Central	GREY	10	0	0	0	

Additional Information

Field	Value
Last updated	September 10, 2021
Created	September 10, 2021
Format	application/vnd.openxmlformats- officedocument.spreadsheetml.sheet
File size	77.5 KiB
License	Open Government Licence – Ontario
Name	Apiary Monitoring 2016
Туре	Data
Language	English and French
Contains geographic markers	
Data made public date	2021-09-10
Data range start	2016-04-18
Data range end	2016-10-05
Data birth date	
Version	

Catalogue metadata

• Let's you find, use, and cite a dataset

Who is the dataset owner? What year was it published? What is a title and description? What is the data use license?

e.g. library catalogue entry, dataverse entry

Hyperspectral time series datasets of maize during the grain filling period

Craig, Valerie; Earl, Hugh; Sulik, John; Lee, Elizabeth A., 2021, "Hyperspectral time series datasets of maize during the grain filling period", https://doi.org/10.5683/SP2/1ZVWFV, Scholars Portal Dataverse, V1, UNF:6:aHOe23WjEa9jEdMRtXkI1Q== [fileUNF]

Remotely sensed hyperspectral data are increasingly being used to assess crop development and growth throughout the growing season. Large datasets capturing key growth stages can be useful to researchers studying many physiological plant responses. This dataset represents a time...

Schema Metadata/Data Dictionary

D	A.	T/	A
	•		

emlployee_idfirst_namelast_namenindept_id44SimonMartinezHH 45 09 73 D145ThomasGoldsteinSA 75 35 42 B246EugeneComelsenNE 22 63 82247AndrewPetculescuXY 29 87 61 A148RuthStadickMA 12 89 36 A1549BarryScardelisAT 20 73 18250SidneyHunterHW 12 94 21 C651JeffreyEvansLX 13 26 39 B652DorisBerndtYA 49 88 11 A353DianeEatonBE 08 74 68 A1						
44 Simon Martinez HH 45 09 73 D 1 45 Thomas Goldstein SA 75 35 42 B 2 46 Eugene Comelsen NE 22 63 82 2 47 Andrew Petculescu XY 29 87 61 A 1 48 Ruth Stadick MA 12 89 36 A 15 49 Barry Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	emlployee_id	first_name	last_name	nin	dept_id	<
45 Thomas Goldstein SA 75 35 42 B 2 46 Eugene Comelsen NE 22 63 82 2 47 Andrew Petculescu XY 29 87 61 A 1 48 Ruth Stadick MA 12 89 36 A 15 49 Barry Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	44	Simon	Martinez	HH 45 09 73 D	1	
46 Eugene Comelsen NE 22 63 82 2 47 Andrew Petculescu XY 29 87 61 A 1 48 Ruth Stadick MA 12 89 36 A 15 49 Bany Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Bemdt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	45	Thomas	Goldstein	SA 75 35 42 B	2	
47 Andrew Petculescu XY 29 87 61 A 1 48 Ruth Stadick MA 12 89 36 A 15 49 Bamy Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Bemdt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	46	Eugene	Comelsen	NE 22 63 82	2	
48 Ruth Stadick MA 12 89 36 A 15 49 Bamy Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Bemdt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	47	Andrew	Petculescu	XY 29 87 61 A	1	
49 Bany Scardelis AT 20 73 18 2 50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	48	Ruth	Stadick	MA 12 89 36 A	15	
50 Sidney Hunter HW 12 94 21 C 6 51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	49	Barry	Scardelis	AT 20 73 18	2	
51 Jeffrey Evans LX 13 26 39 B 6 52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	50	Sidney	Hunter	HW 12 94 21 C	6	
52 Doris Berndt YA 49 88 11 A 3 53 Diane Eaton BE 08 74 68 A 1	51	Jeffrey	Evans	LX 13 26 39 B	6	
53 Diane Eaton BE 08 74 68 A 1	52	Doris	Berndt	YA 49 88 11 A	3	
	53	Diane	Eaton	BE 08 74 68 A	1	

Column Data Type Description emlployee id Primary key of a table lint nvarchar(50) Employee first name first name Employee last name last_name nvarchar(50) National Identification Number nvarchar(15) nin nvarchar(50) Current postion title, e.g. Secretary position Employee department. Ref: Departmetns dept id int M = Male, F = Female, Null = unknown gender char(1) Start date of employment in organization. employment_start_date_date Employment end date. employment end date date

DATA DICTIONARY (METADATA)

- What format is the data in?
- Necessary to know how to use the data
- Related to interoperability
- Data in a proprietary schema (like an instrument specific result file) is not very useful.

Additional Descriptive Metadata

Example: Protein Data Bank Entries

- Additional information about the data that helps a researcher understand it
- Specific to the data type

6M2N

SARS-CoV-2 3CL protease (3CL pro) in complex with a novel inhibitor

bisplay

DOI: 10.2210/pdb6M2N/pdb

Classification: VIRAL PROTEIN Organism(s): Severe acute respiratory syndrome coronavirus 2 Expression System: Escherichia coli BL21(DE3) Mutation(s): No

Deposited: 2020-02-28 Released: 2020-04-15 Deposition Author(s): Su, H.X., Zhao, W.F., Li, M.J., Xie, H., Xu, Y.C.

Experimental Data SnapshotwwPDB Validation IMethod: X-RAY DIFFRACTIONMetricResolution: 2.20 ÅRfreeR-Value Free: 0.254ClashscoreR-Value Work: 0.225Ramachandran outliersR-Value Observed: 0.227Sidechain outliers

Metadata Adds Value to Data

- Catalogue metadata helps researchers find and cite datasets
- Schema/data dictionary metadata helps researchers use data
- Additional metadata helps researchers understand the context of the data
 - Am I allowed to use this data?
 - Where and when was this data collected?
 - What units are the measurements in?
 - How was this data collected?
 - Is the dataset appropriate to answer my question?

Levels of Metadata for your Research

• Study level

- What is the research problem answering
- What is the design of the experiments
- Who is funding, who is supervising, who is involved
- Copies of relevant documents e.g. survey text, consent request text, consent documentation, approved protocols etc.
- Data management plan
- Instruments used to collect data
- How to store it
 - Readme text files
 - Data Management Plan (living document)
 - PDF/A

• PDF/A Archive version of PDF

Save As					
\leftarrow \rightarrow \checkmark \uparrow] $\overset{\circ}{\models}$ $\overset{\circ}{}$ Documents \Rightarrow Zoom	Options ? ×				
Organize New folder	Page range Image All				
 3D Objects Desktop Documents Downloads Music Pictures Videos Videos OSDisk (C:) Image: Name Image: Name Image: Name Name Name<td> Current page Selection Page(s) From: 1 To: 1 Publish what Document Document showing markup Include non-printing information Create bookmarks using: Headings Word bookmarks </td>	 Current page Selection Page(s) From: 1 To: 1 Publish what Document Document showing markup Include non-printing information Create bookmarks using: Headings Word bookmarks 				
File name: Doc1	 Document properties Document structure tags for accessibility 				
Save as type: PDF					
Authors: Carly Huitema Optimize for: Standard (publishing online and printing) Minimum size (publishing online)	PDF options PDF/A compliant Optimize for image guality Bitmap text when fonts may not be embedded Encrypt the document with a password OK				
▲ Hide Folders	Tools Save Cancel				

Levels of Metadata for your Research

- File, dataset or database level
 - What are in each file
 - How are the files related
 - How is the database structured
 - Code used
- How to store it
 - Readme text files
 - A Readme sheet in all Excel files what the experiment is, reference specific lab book pages, hypothesis being tested, dates of data collection or sources of data etc.
 - Code documentation and scripts
 - You can store scripts for manipulating data as a separate tab in Excel

Software in research survey - 2014

Introduction

In 2012 the Software Sustainability Institute ran a survey of researchers at 15 research-intensive universities in the UK to uncover their attitudes to software. For reasons that will be explained in more detail in a forthcoming blog post, the analysis of these results was conducted in Excel. To improve the transparency and reproducibility of these results, this analysis has now been repeated in Python.

Important points

- Licence for the code and data can be found in the the LICENCE and LICENCE_DATA files respectively.
- The code runs on Python 3.
- The data derives from the 2014 software in research survey.

Summary of process

- 1. Get raw survey results from survey software (iSurvey)
- 2. Anonymise data by manually deleting "Email" and "Further comments" fields.
- 3. Make Question 11 parsable in Python

Levels of Metadata for your Research

• Variable or item level

- What are columns of data in a spreadsheet
- What are questions in a questionnaire
- How to store it
 - Readme file or Excel tab giving details
 - Codebook/data dictionary
 - OCA data schema (Discussed later) machine readable

When to document data – Data Lifecycle

 At the very end when it is time to submit the paper/thesis

OR

 At every step along then way when it is easy to remember what was done?

Tools for Data Documentation

- Keep the raw data write scripts (best) or notes about how you manipulated the data for derived datasets
- Scripts instead of point-and-click or remember processes
 - Document point-and-click or "I'm sure I'll remember what I did" things
- SOPs (Standard Operating Procedures)
- Readme files
- Readme tabs to Excel sheets
- Version control systems like GitHub (especially for code but also for documentation)

https://www.uoguelph.ca/research/services-divisions/ethics/sops

File Organization

- Saves time and storage space
 - Finding things now and in the future
- Necessary for collaboration
 - Your supervisor can find your files
 - Your collaborators can all work together on a project and share data
- Prevent data loss
 - Find the data when you need to write up the paper/thesis
- Find the data for publication
- Let others reuse your data

File and folder naming

- Helps identify content of the file (or folder)
- Think of how you want files sorted in folder
- Less than 25 characters preferred
 - Avoid unusual characters !@#\$%^&*()+
 - Use underscores between words or capitalize first letter of each word
- Names independent of location (create project id or acronym)
- Version identification e.g. vo1
- Example:
 - afs_codebook_2018-02-13.pdf
 - afsCodebook20180213.pdf

Interpretation = project id_description of file_ISO date format.file format

Dates

- Year than month than day
- Keeps files in chronological order in the folder

PUBLIC SERVICE ANNOUNCEMENT:

OUR DIFFERENT WAYS OF WRITING DATES AS NUMBERS CAN LEAD TO ONLINE CONFUSION. THAT'S WHY IN 1988 ISO SET A GLOBAL STANDARD NUMERIC DATE FORMAT.

THIS IS THE CORRECT WAY TO WRITE NUMERIC DATES:

2013-02-27

THE FOLLOWING FORMATS ARE THEREFORE DISCOURAGED:

02/27/2013 02/27/13 27/02/2013 27/02/13 20130227 2013.02.27 27.02.13 27-02-13 27.2.13 2013. II. 27. $\frac{27}{2}$ -13 2013.158904109 MMXIII-II-XXVII MMXIII $\frac{LVII}{CCCLXV}$ 1330300800 ((3+3)×(111+1)-1)×3/3-1/3³ 2013 130300800 ((3+3)×(111+1)-1)×3/3-1/3³ 2013 145555

https://xkcd.com/1179/

Folder Organization

- Set up Project Folder structure
 - Follow the structure of your project
 - Avoid overlapping categories or similar folders
 - Restructure when needed
 - Archive instead of delete (archive folders)
- Assign an acronym to your project:
 - E.g. Alpaca Fibre Study = AFS
- All folders will start with this acronym e.g. AFS_Budget
 - Keep your folder names short and clear to understand
 - NO spaces!!!! Use an underscore _

Organizing your project folders

• AFS ← Top folder for project

- AFS_Data ← Where all data will be saved for this project
 - AFS_Data_201806 Data collected in June 2018 is saved here

AFS_Data_201806_Suri.xlsx ← Data collected in June 2018 from Suri breeders AFS_Data_201806_Huacaya.xlsx ← Data collected in June 2018 from Huacaya breeders

Organizing your project folders

- Create a README file save in your top directory or main folder A text file that:
 - Defines your acronyms
 - Describes your project and the folder structure
 - Defines what files will be in each directory or folder
 - Think of this README file as an annotated Table of Contents to your project folder structure

AFS_README.txt

Readme – Starting to Document

- Title: Alpaca Fibre Study (AFS)
- Short abstract or project statement

AFS_Budget = Budget information for the project

AFS_Data = Data collected

- AFS_Data_201806; AFS_Data_201807; AFS_Data_201808
- AFS_SAS = All SAS programs
- AFS_Output = All SAS outputs
- Data collected from 2018-06-01 to 2019-06-01

Price data collected in dollars per pound

•NOTE: 2018-06-15 Rain caused data collection to be delayed until 2018-06-20

Filenames - examples

• AFS_Budget

- AFS_Budget_2018_Expenses.xslx
- AFS_Budget_2018_Revenues.docx
- AFS_SAS
 - AFS_SAS_20180630_DescStats.sas
 - AFS_SAS_20180630_Model.sas

Provide detailed explanation of contents in the README file!

Plan now and Save time later!

Sounds like a lot of work to plan out your directories, file names, and document it!

It will save you a lot of time later!
Especially when you go back after being away for a bit.
Be consistent

Discussion - Organization

- How are you currently organizing your files?
- Let's try to have a conversation

Best Practices for variable names

- 1. Set Maximum length to 32 characters
- 2. ALWAYS start variable names with a letter
- 3. Numbers can be used anywhere in the variable name AFTER the first character
- 4. ONLY use underscores "_" in a variable name
- 5. Do NOT use blanks or spaces
- 6. Use lowercase

Variable names inside my files

- Information or data that we are collecting:
 - Diet $A \rightarrow diet_a$
 - Fibre length in centimetres → fibre_cm
 - Location of farm \rightarrow location
 - Price paid for fleece → price

Coffee Break 10 minutes

Semantic Artefacts

- Glossaries, ontologies and more
- To unambiguously use defined terms (and their relationships)

'Oro glos	dinary' Da ssaries dictior	ta Stru naries glos	ctured ssaries	Princi infor hierar	pled, 2 mal sci chies	KML hemas	Form taxono	nal Des mies lo	cription ogics
Terms	Ad hoc hierarchies	Thesauri	XML	DTDs	Database schemas	En relati mo	tity– ionship odels	expres Frames	ssivity Logics
Gl dat	lossaries and a dictionaries	T s t	hesauri axonon	i and nies	Me da	tadata ita moo	and lels	F	'o rmal tologies

From « Ontology Matching », 2013, J. Euzenat, P. Shvaiko, Springer, 2nd ed. - DOI 10.1007/978-3-642-38721-0

Glossaries, ontologies and more

- Examples of semantic artefacts:
 - Linnaean taxonomy, IUPAC chemical nomenclature, SI units of measurement, MeSH terms for PubMed etc.
- Usage improves data FAIRness
 - Especially interoperability

Image credit: Peter Halasz.

Controlled Vocabulary

- For data/information harmonization
 - E.g. names of offices at a University
 - Office of Research Services (ORS) will be known as Research Services Office (RSO) at the University of Guelph
- To improve searching
 - Protease vs proteinase vs proteases etc.
- To reference a known term without having to define it again
- Challenge term lists may reduce noise but decrease precision
 - E.g. classifying your research from a keyword list

CRediTTaxonomybefore

WWW. PHDCOMICS. COM

Taxonomy

- Biological Taxonomy
- CRediT taxonomy
 - Contributor Roles Taxonomy used for publication contributors
 - High-level taxonomy, including 14 roles.
 - The roles describe each contributor's specific contribution to the scholarly output.
 - <u>https://credit.niso.org/</u>
- is-a relationships
 - parent-child relationships between concepts
 - A cat is-a mammal

Ontologies

- Formal representation of domain knowledge
 - Concepts and their associated relationships
 - Can be hierarchical
 - Pure vs Practical
- Machine actionable and useful for computers
 - Al and Machine Learning
- Valuable in model building, searching, linking resources
- More complex relationships can be modelled
 - Has-a, use-a

Using semantic artifacts

- Identify those semantic artefacts used in your domain
- Features to evaluate:
 - 1. What license and terms of use does it mandate?
 - 2. What format does it come in?
 - 3. Is it well maintained
 - i.e. frequent release, term requests handling, versioning and deprecation policies clarified?
 - 4. Are there stable persistent resolvable identifiers for all terms?
 - 5. Who use it and what resources are being annotated with it?
 - 6. Is it well documented?
 - There should be enough metadata for each class in the artefact and enough metadata about the artefact itself.

Examples of semantic artefacts

- Gene Ontology Resource (GO)
- Enzyme Commission Number (EC number)
- FoodON Food Ontology
 - A harmonized food ontology to increase global food traceability, quality control and data integration
- OBO Foundry (Open Biological and Biomedical Ontology Foundry)
 - Search for ontologies
- KEGG
 - Kyoto Encyclopedia of Genes and Genomes

Check-in: semantic artefacts

- What kinds of semantic artefacts are you using now?
- How would you want to use them more?

Persistent Identifiers (PIDs)

- We want to consistently reference/cite specific references
- A PID is a long-lasting digital identifier to a resource
- A URL is not a PID

Basic structure of PIDs

- A PID resolver that takes a given identifier and returns the associated metadata record from a lookup table
 - The metadata record is controlled/updated by `someone'
 - The metadata record typically contains a URL to digital resources
 - This URL should be updated to reflect when the location of the digital resource changes by the 'someone' who controls the metadata record
- You enter the PID into a resolver service, which retrieves the metadata record and possibly redirects you to the URL
- PIDs don't have to point to just *digital* resources
 - E.g. physical samples (like ARK identifiers)
- An organization pledges to maintain the PID lookup table

DOI

- Digital identifier of an object
- 12 DOI Registration Agencies
- Registration agencies delegate minting of DOIs to content owners (like publishers)
 - Each agency has a specific catalogue metadata schema they use
 - Crossref (specialized for articles etc.)
 - DataCite (initially for data, but many other types as well)
 - Content owners keep DOI metadata updated
 - E.g. when the journal webpage is reorganized all URLs need to be updated

DOI as a URL

• A DOI is not represented as a URL, it is an identifier with form: 10.3352/jeehp.2013.10.3

 But you can put <u>https://doi.org</u> in front of it to have it resolve automatically via a URL

https://doi.org/10.3352/jeehp.2013.10.3

Citation rules change for how DOI is represented

Places to get DOIs

- Journal submissions
 - Part of the publication process
- Borealis (dataverse) submissions at the University of Guelph
 - Submissions curated by the library
- Zenodo CERN backed repository
 - Open submissions.
 E.g. Archive GitHub repository on Zenodo and get a DOI
- FigShare
 - Open Submissions
- Open Science Framework (OSF)
 - Project data, project registrations and more

ORCiD Identifiers

- Researcher identifier
 - Unique, open, digital
 - Differentiates you from similar named individuals
 - Use the same identifier throughout your career
 - Your ORCiD stays the same even as you change names etc.
- Only the ORCiD registry can assign identifiers
 - Unlike DOIs which can delegate
- Users can update their own metadata records
 - Unlike DOIs where metadata is supplied by content owners to registration agencies
- Format: https://orcid.org/0000-0001-2345-6789

ROR Identifiers

- Research Organization Registry (ROR)
- PIDs for research organizations
- Preferred format is the URL
 - https://ror.org/o1r7awg59
- RORs are community curated and maintained

R https://ror.org/01r7awg59

University of Guelph

ORGANIZATION TYPE

Education

OTHER NAMES

LOCATION

Guelph (GeoNames ID 5967629) Canada

OTHED IDENTIFIEDS

R https://ror.org/03srgbm67

University of Guelph-Humber

ORGANIZATION TYPE

Education

OTHER NAMES

LOCATION

Etobicoke (GeoNames ID 5950267)

Canada

ATHER TRENTTETERA

https://projects.tib.eu/pid-service/en/persistent-identifiers/persistent-identifiers-pids/

Checkin

- What kinds of identifiers do you use?
- Do you have an ORCiD?
- Have you created identifiers for research outputs such as blogs, posters, presentations, etc.?

Overlays Capture Architecture Documenting your Data Schemas

What are schemas?

110521	12.2	56.8
120521	10.8	12.6
110521	12.6	NA
110621	9.8	55
110521	8.4	32.4
120621	6.3	52.0

Schemas describe the 'columns' (attributes) of your dataset

Date	Depth	conc
110521	12.2	56.8
120521	10.8	12.6
110521	12.6	NA
110621	9.8	55
110521	8.4	32.4
120621	6.3	52.0

This data is described weakly

What format are the dates in?What units are depth and conc?Can a machine use this?Can I combine with similar datasets?

You can improve data quality by better describing its organization

A Schema

Column	Data Type	Description
Date	DateTime	Collection date in format DDMMYY
Depth	Numeric	Sample depth in cm
Conc	Numeric	Concentration of Carbon in uM

Improve data quality by better describing its organization

The value and usability of the data depends on how well it is described

Universal Semantic Engine – creating a schema

- Bob has created a table of data. He wants to describe his data better with a schema.
- He goes to the Semantic Engine webpage and selects create a new schema.
- He adds entries for each column of his data.
- Then he adds information describing the columns. He describes the data type, he adds a description. He has the option to add more information but decides that this is all his data needs.
- He exports his schema as an Excel sheet and a machine readable JSON and he stores it together with his data.
- His research is more interoperable

Column	Data Type	Description
Date	DateTime	Collection date in format DDMMYY
Depth	Numeric	Sample depth in cm
Conc	Numeric	Concentration of Carbon in uM

Its schema

The data

The semantic engine and schemas

Data needs to be structured to be understood and used.

A schema describes the structure of data.

Date	Depth	conc
110521	12.2	56.8
120521	10.8	12.6
110521	12.6	NA
110621	9.8	55
110521	8.4	32.4
120621	6.3	52.0

For example, a schema describes what information is contained in the columns of a dataset.

More complete and well documented schemas increase the usability and value of the data.

Date	Depth	conc
110521	12.2	56.8
120521	10.8	12.6
110521	12.6	NA
110621	9.8	55
110521	8.4	32.4
120621	6.3	52.0

Benefits of creating better schemas

- Helping your present self, your future self, and your collaborators
 - Avoid 'mystery' data with better descriptions
 - Tune the detail depending on the need
 - Deposit better quality data with less work
- Help others use your data
 - Spend less time supporting other people who are using your data
 - RTFS (read the fine schema)
 - Communicate data context better
 - Especially valuable in cross-disciplinary research
- Help machines find and use your data
 - Schemas can be machine readable
- Publish schemas for better collaboration and interoperability
 - Publish the schema with a separate DOI = others can cite and use
- Better science from better data

Semantic Engine for better schemas

OCA recognizes a schema is made of different related but independent features

Label	Data Type	Format	Information	Character encoding	And more
Date	Datetime	DDMMYY	This represents the date of sample collection in the field. The year codes are all in the 21 st century.	UTF-8	
Depth	Numeric	Double	The sample depth is the depth (in cm) of the sample hole (top of sample collection) before an additional ~5 cm of dirt was excavated and mixed and a sub-sample was removed.	UTF-8	
Conc	Numeric	Double	Carbon concentration in uM was calculated according to methods in DOI:example.	UTF-8	

Label	Data Type	Format	Information	Character encoding	And more
Date	Datetime	ррммүү	This represents the date of sample collection in the field. The year codes are all in the 21^{47} century.	UTF-8	
Depth	Numeric	Double	The sample depth is the depth (in cm) of the sample hole (top of sample collection) before an additional ~5 cm of dirt was exeavated and mixed and a sub-sample was removed.	UTF-8	
Conc	Numeric	Double	Carbon concentration in uM was calculated according to methods in DOI:example.	UTF-8	

OCA expresses the schema in a series of distinct overlays

OCA is a machine-readable format

{ 🗖

"@context": "https://oca.tech/overlays/v1", "type":"spec/overlay/label/1.0", "issued_by":"", "role" "purpose":" "schema_base": "h1:fqSVkf4H6JKuEgu6AUUkD3iYzcBofhKPiuNBTxoL9Dw1" "language": "en_US" "attr_labels":{ 😑 "BRTHDTC": "Date/Time of Birth", "AGE": "Age", "AGEU":"Age Units", "SEX": "Sex", "RACE": "Race", "ETHNIC": "Ethnicity" "attr_categories":[🖃 "_cat-1_" "cat_labels":{ 🗖 "_cat-1_":"" "cat_attributes":{ 🖃 "_cat-1_":[😑 "BRTHDTC". "AGE". "AGEU" "SEX", "RACE" "ETHNIC"

Example overlays

A human-readable label for the data field of the data table.

Text that describes the data in a specific data field, e.g. what protocol was used to measure

Information

Entry

What specific units are used for each specific data field in your data table, e.g. uM.

Restrict entry of a specific data field to a list you provide, e.g. select from a list of three specific field locations to avoid confusing names.

Benefits of a layered schema architecture

Interoperability, extensibility

Each overlay is independent and references the schema base unique identifier.

You can extend and improve other people's schemas to fit your needs.

Add layers – e.g. add a new language or a data transformation when merging datasets using two different schemas.

Extend the schema while keeping the schema base which keeps your data interoperable.

JSON Output

 \sim

Name

E_-EHd3f_BYYZMcJdn5lg1opqi8DNcYVsPAF9twK3kAo.json E3YrRA50HeBj34V_VbIXJnHBU1vAXyCxIAXZWW9wfbkl.json EA0-kx2Mmc6jBooCmZFfJpwVgXPEUnVsK4FUVo-H0vLY.json Eae4FCcmF820ZNxwdAPexp7U26NInmJj3bD08zkvP8HE.json EaO6295i-N3Fl3kuYtMCHk4EkK3nbf792sLB0DlcWYoo.json Edlzlt94ovFazdzX4vKxkRyNSSnAUTy5-7ZfkhnuVwLU.json EeFv10Dgi3mvo jAseg0PbMpvJe6j30CUAed -R0eUsg.json EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJO1okrXpc8.json EFU5APo-Ply2FR3nsu7AxbRyNhhpytJTX3N7 SlpKssM.json EIGY0etUWBBjbQhVlzws1vkWIQ3yoL6egYmBTEiFsE44.json Ej2tha7fyvhB9r4h3LMlwHyjEFmCYpgkwU0aBm8pH-9A.json ELH2JnH_joaJqrCq9_m6q5iY29Vzkpw81usdCMITzrGl.json EQCWrzQmX1LDBW90VhUWx1icluAHgbcT6AAKxsy6F3HA.json ESJige6PuKfDK0YA8zupbTqP5PZM0emcpMvJP-vs6-El.jsom EWPLQqdl3hYKoqLedO63gq94yKO1U1PGJEZiHNqumeMo.json EyoW90rtJwdwX7_j3NGHwkM3zL4LqVRRGZ0Nbpskb_uc.json meta.json

Туре JSON File SON File JSON File JSON File JSON File JSON File "capture base":"EFdwDXYtpNhTHrKmPZECuNMG9WgZL3wJJyJO1 okrXpc8",

"type": "spec/overlays/entry_code/1.0",

"attribute_entry_codes":{

"insectType":["501", "527" "location":["BAFF",

"TH"

"files": {

"capture base-0": "EFdwDXYtpNhTHrKmPZECuNMG9WgZL3wJJyJ01okrXpc8"

"[EFdwDXYtpNhTHrKmPZECuNMG9WgZL3wJJyJ01okrXpc8] character encoding": "EyoW90rtJwdwX7 j3NGHwkM3zL4LqVRRGZ0Nbpskb uc", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] conditional": "EA0-kx2Mmc6jBooCmZFfJpwVgXPEUnVsK4FUVo-H0vLY", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] conformance": "E3YrRA50HeBj34V_Vb1XJnHBU1vAXyCxIAXZWW9wfbkI", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] credential layout": "Eae4FCcmF820ZNxwdAPexp7U26N1nmJj3bD08zkvP8HE", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] entry (en-CA)": "E -EHd3f BYYZMcJdn5Ig1opqi8DNcYVsPAF9twK3kAo", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] entry (fr-CA)": "EFU5APo-Ply2FR3nsu7AxbRyNhpptJTX3N7 S1pKssM", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] entry code": "EeFv10Dqi3mvo jAseg0PbMpvJe6j30CUAed -R0eUsg", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] form layout": "EWPLQqdI3hYKoqLedO63gg94yK01U1PGIFZIHNqumeMo", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] format": "Ej2tha7fyvhB9r4h3LMIwHyjEFmCYpgkwU0aBm8pH-9A", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] information (en-CA)": "Edlzlt94ovFazdzX4vKxkRyNSSnAUTy5-7ZfkhnuVwLU", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] information (fr-CA)": "ESJige6PuKfDK0YA8zupbTqP5PZM0emcpMvJP-vs6-EI", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] label (en-CA)": "ELH2JnH joaJqrCq9 m6g5iY29Vzkpw81usdCMITzrGI", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ010krXpc8] label (fr-CA)": "EQCWrzOmX1LDBW90VhUWx1icIuAHgbcT6AAKxsy6F3HA", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] meta (en-CA)": "Ea06295i-N3FI3kuYtMCHk4EkK3nbf792sLB0DIcWYoo", "[EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8] meta (fr-CA)": "EIGY0etUWBBjbQhVIzws1vkWlQ3yoL6egYmBTEiFsE44",

"root": "EFdwDXYtpNhTHrKmPZECuNMG9WqZL3wJJyJ01okrXpc8"

The JSON uses lots of SAIDs...

SAIDs for Identifiers

- If you find a resource (like a dataset) could you find its identifier?
 - Can you tell if any data has been changed?
- Self-Addressing Identifiers (SAID)
 - Digital fingerprints of the file
 - If you change the file *in any way,* the fingerprint changes.
- If you find an object, you can calculate its identifier
 - Don't need to trust that you received it from the authorized source

Hashing- creating digital fingerprints

- Hash functions
 - One-way formula
 - You can't take a hash and calculate the original data
 - Good for privacy of the data
- The SAID identifier is calculated with a short algorithm
 - Calculate the hash of the data/document
 - Insert the hash into the original data/document

Try out schema writing yourself

- <u>https://agrifooddatacanada.github.io/OCA_training_pathway/</u>
- Preview to our June 2nd launch announcement
- Workflow:
 - Fill out the Excel Template File
 - Create your OCA Schema Bundle
 - Save the Excel Template and Schema Bundle with your dataset
 - Save your schema in the UoG Dataverse repository to give it a DOI

OCA_training_pathway

A pathway for creating data schemas

Schemas are a way to document your data and help make it more FAIR (Findable, Accessible, Interoperable, Reusable). Creating a schema is a process of continuous improvement. You don't need to create the most perfect and complete schema at the beginning. Instead, follow this pathway to gradual improvement where each step produces something usable for researchers.

What are some benefits:

- Increase value and usability of data by adding context
- Enable early metadata creation when it is easier
- · Easier to use standards with metadata
- Machine readable to reduce the number of times the same information must be manually inputted
- · Easy to reuse existing metadata to generate new metadata
- Easier to deposit data into archive repositories

Feedback for creating a schema can be done in this Form.

1. Introduction to the rationale

Next up

- Introduction to R Wednesday May 10
- Documenting your data and processes with R Markdown May 17
- R Shiny May 31
- Introduction to GitHub June 14
- Introduction to Linux June 21

https://agrifooddatacanada.github.io/Research-Data-Workshop-Series/

