
Workshop Series:
Reusable Research Data Made Shiny

Ontario Dairy Research Centre | Online
February 21st - 24th, 2023

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Let’s do a quick recap with
Kahoot!

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

https://create.kahoot.it/share/r-shiny-recap/2287d448-6e25-4299-b15a-cd0303ecb5ed

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Your turn!

Given this UI:

ui <- fluidPage(
textInput("name", "What's your name?"),
textOutput("greeting")

)

** Fix and run them to make sure they
work properly

What is wrong in each of these server functions?

server1 <- function(input, output, server) {
input$greeting <- renderText(paste0("Hello ", name))

}

server2 <- function(input, output, server) {
greeting <- paste0("Hello ", input$name)
output$greeting <- renderText(greeting)

}

server3 <- function(input, output, server) {
output$greeting <- paste0("Hello", input$name)

}

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Reactivity means that outputs automatically update as inputs change.

This is the big idea in Shiny: you don’t need to tell an output when to update, because Shiny
automatically figures it out for you.

Let’s take a closer look on the greetings example. Notice what happens when you type letter by
letter on the textInput.

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Shiny is lazy!
• A Shiny App will only ever do the minimal amount of work needed to update the output controls

that you can currently see
• Saves you resources by running just what you need, BUT…. let’s go back to the greeting example

and see what happens if we introduce a typo to the outputId “greeting”

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Shiny is lazy!
• A Shiny App will only ever do the minimal amount of work needed to update the output controls

that you can currently see
• Saves you resources by running just what you need, BUT…. let’s go back to the greeting example

and see what happens if we introduce a typo to the outputId “greeting”

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

name answer greeting

input outputreactive expression

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Shiny has it’s own execution order
• The order you write your reactive/render functions do not matter

server <- function(input, output, session) {
answer <- reactive(paste0("Hello ", input$name, "!"))
output$greeting <- renderText(answer())

}

server <- function(input, output, session) {
output$greeting <- renderText(answer())
answer <- reactive(paste0("Hello ", input$name, "!"))

}

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Both orders work just fine!

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

But I want to control my app, what now?!

You can use a variant of the reactive expression: eventReactive()

Add an action button to your UI:

actionButton(“show”, “Show Answer”)

And slightly modify your reactive expression answer() to:

answer <- eventReactive(input$show, paste0("Hello ", input$name, "!"))

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Sometimes you need to run a code that is not meant to be rendered, nor to become a reactive
expression, but you need to access input variables.

Observer is your solution!

Add this line anywhere inside the server function.

observe(print(paste(“The value of input$name now is:”, input$name)))

> Look at the console and see what happens when you start your app, and when you start typing.

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Just like reactive() has an eventReactive() to control the execution order, observe() has its
counterpart:

observeEvent()

Can you guess how we would print that message on the console only after we click on the show
button?

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

What is the main difference between an observer and a reactive expression?

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Reactivity in Shiny

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

What is the main difference between an observer and a reactive expression?

observer: does not assign variables

observe(print(“this text came from an observer”))

reactive expression: assigns variables
message <- reactive(“this text came from a reactive expression”)
observe(print(message()))

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Basic UI
Components

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

Adapted from: https://shiny.rstudio.com/articles and https://mastering-shiny.org

Basic UI Components

Let’s take a look at some basic UI components

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

https://shiny.rstudio.com/articles
https://mastering-shiny.org/

Coffee Break!

Welcome Back! Session 2 Session 3 Session 4 Wrap-up!Session 1

